Development of Hybrid Model for Estimating Construction Waste for Multifamily Residential Buildings Using Artificial Neural Networks and Ant Colony Optimization
نویسندگان
چکیده
Due to the increasing costs of construction waste disposal, an accurate estimation of the amount of construction waste is a key factor in a project’s success. Korea has been burdened by increasing construction waste as a consequence of the growing number of construction projects and a lack of construction waste management (CWM) strategies. One of the problems associated with predicting the amount of waste is that there are no suitable estimation strategies currently available. Therefore, we developed a hybrid estimation model to predict the quantity and cost of waste in the early stage of construction. The proposed approach can be used to address cost overruns and improve CWM in the subsequent stages of construction. The proposed hybrid model uses artificial neural networks (ANNs) and ant colony optimization (ACO). It is expected to provide an accurate waste estimate by applying historical data from multifamily residential buildings.
منابع مشابه
HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملOptimization of Combined Heat and Power Systems using a Hybrid Algorithm of Ant and Bee Colony Optimization
Abstract: In the last few years, due to the development of the new equipment in power systems, challenges have appeared in their planning and operation. One of these issues is the development of combined heat and power (CHP) units. These units have the capability to generate heat and electricity simultaneously according to their limitations. Hence, it is necessary for them to think about the ar...
متن کاملDesign and analysis of hybrid systems solar, wind, osmotic for green plants using ant colony optimization algorithm
Nature has always proven that it is able to overcome its problems. However, human manipulation has led to environmental degradations. The dryness of a thousand-year Urmia Lake (a brinewater lake in Iran) is an example of environmental degradation that happened due to successive droughts and construction of dams on the basin of this lake. This study examines methods for the revival of Urmia Lake...
متن کاملA HYBRID SUPPORT VECTOR REGRESSION WITH ANT COLONY OPTIMIZATION ALGORITHM IN ESTIMATION OF SAFETY FACTOR FOR CIRCULAR FAILURE SLOPE
Slope stability is one of the most complex and essential issues for civil and geotechnical engineers, mainly due to life and high economical losses resulting from these failures. In this paper, a new approach is presented for estimating the Safety Factor (SF) for circular failure slope using hybrid support vector regression (SVR) and Ant Colony Optimization (ACO). The ACO is combined with the S...
متن کاملEstimation of Total Organic Carbon from well logs and seismic sections via neural network and ant colony optimization approach: a case study from the Mansuri oil field, SW Iran
In this paper, 2D seismic data and petrophysical logs of the Pabdeh Formation from four wells of the Mansuri oil field are utilized. ΔLog R method was used to generate a continuous TOC log from petrophysical data. The calculated TOC values by ΔLog R method, used for a multi-attribute seismic analysis. In this study, seismic inversion was performed based on neural networks algorithm and the resu...
متن کامل